
1. The table shows some expressions. The letters a, b, c and d represent lengths. π and 2 are numbers that have no dimensions. Three of the expressions could represent areas.

Tick (\checkmark) the boxes underneath the **three** expressions which could represent areas.

2. The table shows some expressions.

a, *b*, *c* and *d* represent lengths.

 π and 3 are numbers which have no dimensions.

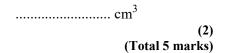
3 <i>a</i> ²	$\frac{\pi ab^3}{3d}$	πbc	ac+bd	$\pi(a+b)$	$3(c+d)^3$	$3\pi bc^2$

Tick (\checkmark) the boxes underneath the **three** expressions which could represent volumes.

(Total 3 marks)

3. This table shows some expressions.

The letters *x*, *y* and *z* represent lengths.


(a) Place a tick in the appropriate column for each expression to show whether the expression can be used to represent a length, an area, a volume or none of these.

Expression	Length	Area	Volume	None of these
x + y + z				
xyz				
xy + yz + x				

(3)

The volume of a cube is 8 m^3 .

(b) Change 8 m^3 to cm^3 .

4. The table shows some expressions.

p, q and r represent lengths.

 π , 2, 3 and 4 are values that have no dimension.

Place a tick (\checkmark) in the appropriate column for each expression to show whether the expression can be used to represent a length, an area, a volume or none of these.

Expression	Length	Area	Volume	None of these
3pqr				
4p + 2q				
πr^2				

(Total 3 marks)

3

3

1. Tick boxes 1,3 & 6

B1 for $\frac{\pi abc}{2d}$; B1 for $2a^2$; B1 for $2(c^2 + d^2)$ (-B1 for each additional expression ticked (>3) to a minimum of 0)

[3]

2.
$$\frac{\pi a b^3}{3d} 3(c+d)^3 3 \pi b c^2$$

B3 (B1 for each one correct) Nb -B1 for each of the 4^{th} , 5^{th} , 6^{th} tick

[3]

3.	(a)	Length Volume Area	B1 for Length B1 for Volume B1 for Area	3
	(b)	$8 imes 10^6$		2
		8 × 100 × 1	00 × 100 M1 for sight of 100 × 100 × 100 oe A1 for 8000000 oe	[5]
4.	volun	ne	B1 cao	3
	Lengt	h	B1 cao	

Area

1. Mathematics A

Paper 3

The majority of candidates gained either one or two marks. $2(c^2 + d^2)$ and $2a^2$ were the two correct expressions most commonly identified. The most popular wrong answer was $2ad^2$. Unfortunately, some candidates lost marks because they ignored the instructions and ticked more than three boxes.

Paper 5

The vast majority of candidates gained credit in this question on dimensions. The most common error was omitting the first expression, $\frac{\pi abc}{2d}$ and replacing it by the fourth expression, $\pi a^2 + b$.

Mathematics B

Paper 18

The majority of candidates were able to score at least one mark on this question. $2ad^2$ was a popular incorrect answer.

Paper 16

37% gained 2 or more marks. 53% did not score.

B1 cao

[3]

2. Specification A

Higher Tier

Many candidates scored well on this question with a majority of grade C candidates, or above, obtaining at least two of the three marks. The most common incorrect choices were $3a^2$ and πbc .

Intermediate Tier

Quite well answered. Most candidates earned at least 2 marks.

Specification B

Higher Tier

Virtually all candidates were able to gain some credit with their answers to this question with approximately 55% of candidates gaining full marks.

Intermediate Tier

Many candidates gained at least one mark in this question and often more, without fully convincing the reader of their understanding of dimensional analysis.

- 3. The majority of candidates were able to score some marks in part (a). The recognition of xy + yz + xz as an expression for an area caused the most problems. Part (b) was poorly done. Few candidates knew how to convert m³ into cm³. 800 cm³ was frequently given as an incorrect answer. A number of candidates clearly misunderstood the concept of m³ as a unit and interpreted the value given as a cube of sides 8m thus obtaining the incorrect answer of 512 000 000 cm³.
- 4. Mistakes in this question usually centred around identifying the dimensions of 3pqr and 4p + 2q, with πr^2 usually being correctly associated with area.